Referencias
Agirre, E. and Martinez, D. (2004) Unsupervised word sense disambiguation based on automatically retrieved examples: The importance of bias. In Proceedings of EMNLP 2004, Barcelona, Spain, July
Alonso, J. M., Barro, S., Bugarín, A., van Deemter, K., Gardent, C., Gatt, A., Reiter, E., Sierra, C., Theune, M., Tintarev, N., Yano, H., & Budzynska, K. (2020, September). Interactive Natural Language Technology for Explainable Artificial Intelligence. F. Heintz et al. (Eds.): TAILOR 2020, LNAI 12641, pp. 63–70, 2021.
Balahur, A.; Hermida, J.M.; Montoyo, A. (2012) Building and Exploiting EmotiNet, a Knowledge Base for Emotion Detection Based on the Appraisal Theory Model. IEEE Transactions on Affective Computing, Vol: 3 Num: 1 (Pp. 88-101).
Barikeri, S.; A. Lauscher, I. Vulc, and G. Glava (2021) “REDDITBIAS: A Real-World Resource for Bias Evaluation and Debiasing of Conversational Language Models” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguisticsand the 11th International Joint Conference on Natural Language Processing, pages 1941–1955.
Baeza-Yates,R., & Ribeiro-Neto, B. (2011). Modern Information Retrieval-The Concepts and Technology behind Search.
Bastos, M. T., y Mercea, D. (2019). The Brexit botnet and user-generated hyper-partisan news. Social Science Computer Review,37(1), 38-54.
Barros, C.; Lloret, E. Saquete, E.; Navarro-Colorado, B. NATSUM: Narrative abstractive summarization through cross-document timeline generation. Information Processing & Management, 56(5): 1775-1793 (2019)
Boldrini, e., Balahur, A., Martínez-Barco, P. and Montoyo, A. (2012) Using EmotiBlog to Annotate and Analyse Subjectivity in the New Textual Genres. Data Mining and Knowledge Discovery , Vol: 25 , Num: 3, (Pp. 603-634)
Bolukbasi, T., Chang, K., Zou, J., Saligrama, V. and Kalai, A. (2016). Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. Advances in neural information processing systems 29 (2016): 4349-4357.
Canales, L., & Martínez-Barco, P. (2014). Emotion Detection from text: A Survey. Processing in the 5th Information Systems Research Working Days (JISIC 2014), 37.
Canning, Y. (2002) Syntactic Simplification of Text. Ph.D. Thesis, University of Sunderland.
Celikyilmaz, Asli Elizabeth Clark, and Jianfeng Gao. (2020). “Evaluation of text generation: A survey”. arXiv preprint https://arxiv.org/abs/2006.14799
Chandrasekar, R., Christine, D. and Srinivas, B. (1996) Motivations and methods for text simplification. Proceedings of COLING-96, 1041-1044
Cowie, J. and Wilks, Y. (1996) Information Extraction
Devezas, J. L., Nunes, S., Guillén, A., Gutiérrez, Y., & Muñoz, R. (2018). FEUP at TREC 2018 Common Core Track-Reranking for Diversity using Hypergraph-of-Entity and Document Profiling. In TREC.
Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proc. NAACL-HLT, 2019, pp. 1–16.
Devlin, S. (1999) Automatic Language Simplification for Aphasic Readers. Ph.D. Thesis, University of Sunderland.
Dias, P. (2014). From “infoxication” to “infosaturation” : a theoretical overview of the congnitive and social effects of digital immersion. Primer congreso internacional infoxicación : mercado de la información y psique, libro de actas (pp. 67–84).
Escudero, G., Màrquez, L., and Rigau, G. et al. (2000) A comparison between supervised learning algorithms for word sense disambiguation. In Proceedings of the Fourth Computational Natural Language Learning Workshop, CoNLL-2000. Lisbon, Portugal, 2000.
Faille, J., Gatt, A., Gardent, C. (2020) The Natural Language Pipeline, Neural Text Generation and Explainability. Proceedings of the 2nd Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI 2020) (pp. 16-21)
Gasperin, C.; Maziero, E.; Specia, L.; Pardo, T.S.P.; Aluisio, S.M. (2009). Natural language processing for social inclusion: a text simplification architecture for different literacy levels. XXXVI Seminário Integrado de Software e Hardware (SEMISH-2009), pp. 387-401. Bento Gonçalves, Brazil.
Grace, G. W. (2018). The linguistic construction of reality. Routledge.
Gutiérrez, Y.; Vázquez, S.; Montoyo, A. (2011). Word Sense Disambiguation: A Graph-Based Approach Using N-Cliques Partitioning Technique, Lecture Notes in Computer Science , Vol: 6716. (Pp. 112-124).
Gutiérrez Y., Vázquez S. & Montoyo A. (2017) Spreading semantic information by Word Sense Disambiguation. Knowledge-Based Systems. Volume 132. (pp 47-61).
Gutiérrez, Y., Tomas, D., & Moreno, I. (2019). Developing an ontology schema for enriching and linking digital media assets. Future Generation Computer Systems, 101, 381-397.
Klebanov, B., Knight, K. and Marcu, D. (2004) Text Simplification for Information Seeking Applications. On the Move to Meaningful Internet Systems, Lecture Notes in Computer Science 3290, 735-747.
Konstantinou, N., & Spanos, D. E. (2015). Introduction: Linked Data and the Semantic Web. In Materializing the Web of Linked Data. Springer International Publishing. (pp. 1-16).
Lloret, E.; Balahur, A.; Gómez, J.M.; Montoyo, A.; Palomar, A. (2012). Towards a Unified Framework for Opinion Retrieval, Mining and Summarization. Journal of Intelligent Information Systems , Vol: 39 , Num: 3. (Pp. 711-747)
Lloret, E.; Palomar, M. COMPENDIUM: a text summarisation tool for generating summaries of multiple purposes, domains, and genres. Natural Language Engineering 19(2): 147-186 (2013)
Lloret, E.; Romá-Ferri, MT.; Palomar, M. COMPENDIUM: A text summarization system for generating abstracts of research papers. Data & Knowledge Engineering, 88: 164-175 (2013)
Lloret, E. Text Summarisation based on Human Language Technologies and its Applications. Phd Thesis. University of Alicante, (2011) https://dialnet.unirioja.es/servlet/articulo?codigo=3919534
Open Sourcing BERT (2019). State-of-the-Art Pre-training for Natural Language Processing. Google AI Blog. Retrieved 2019-08-25.
Mani, Inderjeet. Automatic Summarization. John Benjamins Pub Co. (2001).
Mitkov, R. (2002) Anaphora Resolution. Longman.
Ng, H. T., Wang, B., and Chan, Y. S. (2003) Exploiting parallel texts for word sense disambiguation: An empirical study. In Proceedings of ACL 2003, Sapporo, Japan.
Ng, V. (2010) Supervised noun phrase coreference research: The first fifteen years. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 1396-1411, Uppsala, Sweden.
Palomar, M., Ferrández, A., Moreno, L., Martínez-Barco, P., Peral, J., Saiz-Noeda, M., and Muñoz, R. (2001) An Algorithm for Anaphora Resolution in Spanish Texts. In the Journal of Computational Linguistics, 27(4):545-567.
Ravi Teja Gadde, Ivan Bulyko. Towards Continual Entity Learning in Language Models for Conversational Agents. Conference on Neural Information Processing Systems (NeurIPS). 05 Aug 2021
Reiter, E. (2019) Natural Language Generation Challenges for Explainable AI. arXiv:1911.08794 (2019) http://arxiv.org/abs/1911.08794
Rommetveit, R. (2014). Words, Meaning, and Messages: Theory and Experiments in Psycholinguistics.
Academic Press.
Saquete, E., Tomás, D., Moreda, P., Martínez-Barco, P., y Palomar, M. (2020). Fighting post-truth using natural language processing: A review and open challenges. Expert Systems with Applications,141.
Sonnenschein, A. R., Hofmann, S. G., Ziegelmayer, T., & Lutz, W. (2018). Linguistic analysis of patients with mood and anxiety disorders during cognitive behavioral therapy. Cognitive behaviour therapy, (pp. 1-13).
Sparck Jones, K. (2007) Automatic summarising: The state of the art. In Information Processing and Management, 43:1449 – 1481.
Vicente, ME. Lloret. A Discourse-Informed Approach for Cost-Effective Extractive Summarization. In Proceedings of the 8th International Conference on Statistical Language and Speech Processing (SLSP) 2020: 109-121
Wallach, H. (2016). Computational Social Science. Computational Social Science, 307.
Wiebe, J., Wilson, T., Bruce, R., Bell, M., and Martin, M. (2004). Learning subjective language. Computational Linguistics, 30(3):277–308.
Zamuda, A. Lloret, A. Optimizing Data-Driven Models for Summarization as Parallel Tasks. Journal of Computer Science, 42: 101101 (2020)
Zhao, J., Wang, T., Yatskar, M., Ordonez, V., and Chang, K.. (2018). Gender bias in coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 15–20, New Orleans, USA.